热门回答:
先上一张大数据技术学习的必备技能图:
入门学习需要掌握的基本技能:
1、Java
2、Linux命令
3、HDFS
4、MapReduce
5、 Hadoop
6、Hive
7、ZooKeeper
8、HBase
9、Redis
10、Flume
11、SSM
12、Kafka
13、Scala
14、Spark
15、MongoDB
16、Python与数据分析等等。
我们所说的大数据培训学习。一般是指大数据开发。大数据开发需要学习的东西可以参考一下加米谷大数据培训0基础学习的课程。具体描述可见guan网:
第一阶段:Java设计与编程思想
第二阶段: Web前端开发
第三阶段: JavaEE进阶
第四阶段: 大数据基础
第五阶段: HDFS分布式文件系统
第六阶段:MapReduce分布式计算模型
第七阶段: Yarn分布式资源管理器
第八阶段: Zookeeper分布式协调服务
第九阶段: Hbase分布式数据库
第十阶段: Hive分布式数据仓库
第十一阶段: FlumeNG分布式数据采集系统
第十二阶段: Sqoop大数据迁移系统
第十三阶段: Scala大数据黄金语言
第十四阶段: kafka分布式总线系统
第十五阶段: SparkCore大数据计算基石
第十六阶段: SparkSQL数据挖掘利器
第十七阶段: SparkStreaming流失计算平台
第十八阶段: SparkMllib机器学习平台
第十九阶段:SparkGraphx图计算平台
第二十阶段: 大数据项目实战
其他观点:
这是一个非常好的问题。作为一名IT从业者。同时也是一名教育工作者。我来回答一下。
大数据经过多年的发展。已经逐渐形成了一个比较庞大且系统的知识体系。整体的技术成熟度也已经比较高了。所以当前学习大数据技术也会有一个比较好的学习体验。
不论是学生还是职场人。要想学习大数据都需要掌握以下几个基本内容:
第一:计算机基础知识。计算机基础知识对于学习大数据技术是非常重要的。其中操作系统、编程语言和数据库这三方面知识是一定要学习的。编程语言可以从Python开始学起。而且如果未来要从事专业的大数据开发。也可以从Java开始学起。计算机基础知识的学习具有一定的难度。学习过程中要重视实验的作用。
第二:数学和统计学基础知识。大数据技术体系的核心目的是“数据价值化”。数据价值化的过程一定离不开数据分析。所以作为数据分析基础的数学和统计学知识就比较重要了。数学和统计学基础对于大数据从业者未来的成长空间有比较重要的影响。所以一定要重视这两个方面知识的学习。
第三:大数据平台基础。大数据开发和大数据分析都离不开大数据平台的支撑。大数据平台涉及到分布式存储和分布式计算等基础性功能。掌握大数据平台也会对于大数据技术体系形成较深的认知程度。对于初学者来说。可以从Hadoop和Spark开始学起。
我从事互联网行业多年。目前也在带计算机专业的研究生。主要的研究方向集中在大数据和人工智能领域。我会陆续写一些关于互联网技术方面的文章。感兴趣的朋友可以关注我。相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题。或者是考研方面的问题。都可以在评论区留言。或者私信我!
其他观点:
想要学好大数据需掌握以下技术:
1. Java编程技术
Java编程技术是大数据学习的基础。Java是一种强类型语言。拥有极高的跨平台能力。可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等。是大数据工程师最喜欢的编程工具。因此。想学好大数据。掌握Java基础是必不可少的!
2.Linux命令
对于大数据开发通常是在Linux环境下进行的。相比Linux操作系统。Windows操作系统是封闭的操作系统。开源的大数据软件很受限制。因此。想从事大数据开发相关工作。还需掌握Linux基础操作命令。
3. Hadoop
Hadoop是大数据开发的重要框架。其核心是HDFS和MapReduce。HDFS为海量的数据提供了存储。MapReduce为海量的数据提供了计算。因此。需要重点掌握。除此之外。还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!
4. Hive
Hive是基于Hadoop的一个数据仓库工具。可以将结构化的数据文件映射为一张数据库表。并提供简单的sql查询功能。可以将sql语句转换为MapReduce任务进行运行。十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。
5. Avro与Protobuf
Avro与Protobuf均是数据序列化系统。可以提供丰富的数据结构类型。十分适合做数据存储。还可进行不同语言之间相互通信的数据交换格式。学习大数据。需掌握其具体用法。
6.ZooKeeper
ZooKeeper是Hadoop和Hbase的重要组件。是一个为分布式应用提供一致性服务的软件。提供的功能包括:配置维护、域名服务、分布式同步、组件服务等。在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。
7. HBase
HBase是一个分布式的、面向列的开源数据库。它不同于一般的关系数据库。更适合于非结构化数据存储的数据库。是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。
8.phoenix
phoenix是用Java编写的基于JDBC API操作HBase的开源SQL引擎。其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性。大数据开发需掌握其原理和使用方法。
9. Redis
Redis是一个key-value存储系统。其出现很大程度补偿了memcached这类key/value存储的不足。在部分场合可以对关系数据库起到很好的补充作用。它提供了Java。C/C++。C#。PHP。Java。Perl。Object-C。Python。Ruby。Erlang等客户端。使用很方便。大数据开发需掌握Redis的安装、配置及相关使用方法。
10. Flume
Flume是一款高可用、高可靠、分布式的海量日志采集、聚合和传输的系统。Flume支持在日志系统中定制各类数据发送方。用于收集数据;同时。Flume提供对数据进行简单处理。并写到各种数据接受方(可定制)的能力。大数据开发需掌握其安装、配置以及相关使用方法。
11. SSM
SSM框架是由Spring、SpringMVC、MyBatis三个开源框架整合而成。常作为数据源较简单的web项目的框架。大数据开发需分别掌握Spring、SpringMVC、MyBatis三种框架的同时。再使用SSM进行整合操作。
12.Kafka
Kafka是一种高吞吐量的分布式发布订阅消息系统。其在大数据开发应用上的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理。也是为了通过集群来提供实时的消息。大数据开发需掌握Kafka架构原理及各组件的作用和使用方法及相关功能的实现!
13.Scala
Scala是一门多范式的编程语言。大数据开发重要框架Spark是采用Scala语言设计的。想要学好Spark框架。拥有Scala基础是必不可少的。因此。大数据开发需掌握Scala编程基础知识!
14.Spark
Spark是专为大规模数据处理而设计的快速通用的计算引擎。其提供了一个全面、统一的框架用于管理各种不同性质的数据集和数据源的大数据处理的需求。大数据开发需掌握Spark基础、SparkJob、Spark RDD、spark job部署与资源分配、Spark shuffle、Spark内存管理、Spark广播变量、Spark SQL、Spark Streaming以及Spark ML等相关知识。
15.Azkaban
Azkaban是一个批量工作流任务调度器。可用于在一个工作流内以一个特定的顺序运行一组工作和流程。可以利用Azkaban来完成大数据的任务调度。大数据开发需掌握Azkaban的相关配置及语法规则。想学习好大数据可以关注公众号程序员大牛 有视频资源分享一起学习
16.Python与数据分析
Python是面向对象的编程语言。拥有丰富的库。使用简单。应用广泛。在大数据领域也有所应用。主要可用于数据采集、数据分析以及数据可视化等。因此。大数据开发需学习一定的Python知识。
17.Solr与Es搜索引擎
海量数据建立搜索引擎。方便用户搜索数据。
18.爬虫技术
爬取重要数据存储分析。
19.根据用户喜好。推荐各种算法。需要用户了解一些算法知识。数学知识等。这个对软件学习人员要求就较高了。
总之。大数据需要学习的技术很多。在这里不一一举例说明了。技术的更新迭代也比较快。学到老活到老。没有学的完技术。只有一直不懈努力。
以上就是由优质生活领域创作者 生活常识网 整理编辑的,如果觉得有帮助欢迎收藏转发~
本文地址:http://www.shenzhoubaby.com/242095.html,转载请说明来源于:生活常识网
声明:本站部分文章来自网络,如无特殊说明或标注,均为本站原创发布。如若本站内容侵犯了原著者的合法权益,可联系@qq.com进行处理。分享目的仅供大家学习与参考,不代表本站立场。
评论(2)
数据,分布式,阶段,是一个,基础,技术,框架,系统,数据库,平台
没想到大家都对大数据主要学习哪些内容?感兴趣,不过这这篇解答确实也是太好了
先上一张大数据技术学习的必备技能图:入门学习需要掌握的基本技能:1、Java2、Linux命令3、HDFS4、M